

Polysnap ${ }^{\circledR}$

With over 26,000 combinations Bulgin's Polysnap mains power inlet modules offer a very adaptable and flexible solution to panel design.

Polysnap allow combinations of mains inlets and outlets, filtered inlets, switches, fuseholders, voltage selectors, indicators and circuit breakers mounted in either horizontal or vertical format bezels ready for quick snap-fit assembly. The compact design occupies the minimum of panel area and a single rectangular mounting hole, offering easy installation for this mains power entry module.

To complement Polysnap the Polyflange range offers a flange fixing alternative for designers who prefer the security of screw fixing.

All types and variations are available through Bulgin's extensive distribution network.

Type	Page
BZV Series	$94-104$
BZH Series	$105-109$
BZM Series	110
BVA \& BVB Series	$111-112$
Filtered Bezel Options	$113-118$

Components used in Polysnap ${ }^{\circledR}$ and Polyflange Power Inlet Modules
Note：Components are Approved Individually（where applicable）．Please see individual component pages for full specifications．
IEC CONNECTORS，FUSEHOLDERS AND VOLTAGE SELECTORS

Type	Description	Rating	Approvals
DX0928	Neon Indicator	110 V or 250 V a．c．／d．c．working	
FX0359	$5 \times 20 \mathrm{~mm}$ Fuseholder	Max．rating 10A．250V See Page 156	時－（\＄4）（S）
PF001 1	C14 Power Inlet with Integral $5 \times 20 \mathrm{~mm}$ Fuseholder	Max．rating 10A．250V a．c． See Page 67	會耳）（\＄1）（S）
PF0033	C14 Power Inlet with Integral twin $5 \times 20 \mathrm{~mm}$ Fuseholder	Max．rating 10A．250V a．c． See Page 68	㛀耳（\＄4）（S）
PX0575	C14 Power Inlet，Cold condition	Max．rating 10A． 250 V a．c． See Page 63	
PX0595	C16 Power Inlet，Hot Condition	Max．rating 10A．250V a．c． See Page 69	會\＃（SA）（S）¢ ¢
PX0695	Sheet F Power Outlet	Max．rating 10A．250V a．c． See Page 76	會耳）（\＄1）（S）
PX0783	Sheet F Shuttered Power Outlet	Max．rating 10A． 250 V a．c． See Page 77	
PX0598	C20 Power Inlet	Max．rating 16A， 250 V a．c． See Page 79	會耳阶
VS0001	Voltage Selector marked 120／240V	Max．rating 6．3A．120／240V a．c． See Page 196	酉（\＄1）S

SWITCHES，INDICATORS AND CIRCUIT BREAKERS

No Poles	Illumination	Current Ratings	Circuit	Approvals
Single Pole	Non－illuminated High Inrush Illuminated	Max．rating 16A Resistive，4A Inductive，250Vac． Max．rating 16A Resistive，4A Inductive，250Vac． Inrush current，150A to IEC65． Max．rating 16A Resistive，4A Inductive，250Vac．		
Double Pole	Non－illuminated High Inrush Illuminated	Max．rating 16A Resistive，4A Inductive，250Vac． Max．rating 16A Resistive，4A Inductive，250Vac． Inrush current，150A to IEC65． Max．rating 16A Resistive，4A Inductive，250Vac． 250Vac Neon．		
For Mini Bezel： Single Pole	Non－illuminated	Max．rating 10A Resistive，4A Inductive，250Vac．	1 C －${ }^{\text {2a }}$	团－S
	Illuminated	Max．rating 10A Resistive，4A Inductive，250Vac． 250 Vac Neon．	$\stackrel{l a}{a b}$	码－S
Double Pole	Non－illuminated	Max．rating 10A Resistive，4A Inductive，250Vac．	$\begin{aligned} & 1 \\ & 4 \\ & \bullet \\ & \bullet \end{aligned}$	约－阴
	High Inrush	Max．rating 10A Resistive，4A Inductive，250Vac． Inrush current，85A to EN61058－1．		码－${ }^{\text {S }}$
	Illuminated	Max．rating 10A Resistive，4A Inductive，250Vac． 250Vac Neon．	$\stackrel{\circ}{1}$	B
Indicator		250 Vac neon lamp connected internally to terminals．	$1 \bullet \square$	䂞－S
Circuit Breaker	Non－illuminated		$20-1$	－\＄
	Illuminated	125Vac and 250Vac Neons．	$30-1$	－1 SH

Polysnap and Polyflange range and all components are compliant

C14 IEC Fused Inlet - Vertical

VERTICAL MODULE ARRANGEMENT

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Single Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

BZVO1/*****/** $\}$ A $=59.7$ With Filter BZVO2/*****/** $\}$ A $=$ 27.4 Without Filter BZV15/*****/** $\}$ A $=59.7$ With Filter BZV16/*****/** $\} A=37.9$ Without Filter Panel Thickness. 1.0, 1.5, 2.0, 3.0 mm .

How to Order

Type of Inlet / Outlet

Single Fused C14 Power Inlet (cold condition),
6.3 or 2.8 mm tabs:
$01=$ PF0011/63
$02=$ PF0011/28

Twin Fused C14 Power Inlet (cold condition),
6.3 or 2.8 mm tabs:
$15=$ PF0033/63
16 = PF0033/28

Filtered or Non Filtered Inlet

Z0000 $=$ Non Filtered
Axxxx $=$ Standard
$B x x x x=$ Medical
Cxxxx $=$ High Performance Standard
(Single Fuse Version only)

For Filtered inlet use 6th to 9th characters from filter ordering code see pages 115-118.
E.g. BZVO1/A0620/01

Combination of Other Components

Single Pole Switch:
$\mathbf{0 1}=$ S.P. Switch

Single Pole Neon Switch:
$02=$ S.P. Red Neon Switch
08 = S.P. Green Neon Switch
Neon Indicator:
03 = Red Neon Indicator

Single Pole High Inrush Switch:
46 = S.P. High Inrush Switch
Single Pole Switch Marked I/O:
$\mathbf{6 9}=$ S.P. Switch (I/O)
Single Pole Neon Switch Marked (I/O):
71 = S.P. Red Neon Switch (I/O)
74 = S.P. Green Neon Switch (I/O)
Single Pole High Inrush Switch Marked (I/O):
98 = S.P. High Inrush Switch (I/O)

[^0]- Fused Inlet with 2.8 mm or 6.3 mm tags
- Double Pole Switch or Indicator Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
Single Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{0 1}=\text { PFOO1 1/63 } \\ & \mathbf{0 2}=\text { PFOO1 1/28 } \end{aligned}$ Twin Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{1 5}=\text { PFO033/63 } \\ & \mathbf{1 6}=\text { PF0033/28 } \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard Bxxxx $=$ Medical Cxxxx $=$ High Performance Standard (Single Fuse Version only) For Filtered inlet use 6th to 9th characters from filter ordering code see pages 115-118. E.g. BZVO1/A0620/10	Neon Indicator: D3 $=$ Red Neon Indicator Double Pole Switch: $\mathbf{1 0}=$ D.P. Switch Double Pole Neon Switch: $\mathbf{1 1}$ = D.P. Red Neon Switch $\mathbf{1 2}$ = D.P. Green Neon Switch Double Pole High Inrush Switch: 13 = D.P. High Inrush Switch Double Pole Switch Marked I/O: $70=$ D.P. Switch (I/O) Double Pole Neon Switch Marked (I/O): 76 = D.P. Red Neon Switch (I/O) 77 = D.P. Green Neon Switch (I/O) Double Pole High Inrush Switch Marked (I/O): 78 = D.P. High Inrush Switch (I/O) B1 = D.P. High Inrush Green Neon Switch (I/O)

[^1]C14 and C16 IEC Inlet - Vertical
VERTICAL MODULE ARRANGEMENT

- Inlet with 2.8 mm or 6.3 mm tags
- Single Pole Switch or Neon Indicator Variations
- Filtered Inlet Option
- Options of I/O marked switches
- Non Fused

How to Order

Type of Inlet / Outlet
Filtered or Non Filtered Inlet
Combination of Other Components

C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs:
$\mathbf{0 3}=P \times 0575 / 63$
$\mathbf{0 4}=$ PX0575/28

C16 Power Inlet (hot condition), 6.3 or 2.8 mm tabs:
$05=$ PX0595/63
$06=$ PX0595/28

Please note type 05 and 06 are not available in filtered version

\qquad

Single Pole Switch:
$\mathbf{0 1}=$ S.P. Switch

Single Pole Neon Switch:
$\mathbf{0 2}=$ S.P. Red Neon Switch
$08=$ S.P. Green Neon Switch

Neon Indicator:
$\mathbf{0 3}=$ Red Neon Indicator

Single Pole High Inrush Switch:
46 = S.P. High Inrush Switch

Single Pole Switch Marked I/O:
69 = S.P. Switch (I/O)
Single Pole Neon Switch Marked (I/O):
71 = S.P. Red Neon Switch (I/O)
74 = S.P. Green Neon Switch (I/O)
Single Pole High Inrush Switch Marked (I/O):

98 = S.P. High Inrush Switch (I/O)

[^2]
C14 and C16 IEC Inlet with Circuit Breaker

Note: For technical details of individual components also see page 92

Time in Seconds
Trip Curves are Specified at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$

Capacity Correction Factors for Ambient Temperatures Current Rating 5 to 15A

Temperature ${ }^{\circ} \mathrm{C}$	-10	-20	-25	-30	-40	-50	-60
Correction Factor	.90	.95	1.00	1.10	1.32	1.61	2.15

C14 and C16 IEC Inlet - Vertical

How to Order

condition), 6.3 or 2.8 mm tabs:
$05=$ PX0595/63
$06=$ PX0595/28

Please note type 05 and 06 are not available in filtered version
condition) 6.3 (cold tabs:
$03=$ PX0575/63
$04=$ PX0575/28

Z0000 $=$ Non Filtered
Axxxx $=$ Standard
$B x x x x=$ Medical

For Filtered inlet use 6th to 9th characters from filter ordering code see pages 113-114.
E.g. BZV03/A0120/07

Twin Fuseholder and Double Pole Switch:
$\mathbf{0 5}=2 \times$ FX0359 + D.P. Switch
Twin Fuseholder and Double Pole Neon Switch:
$\mathbf{0 6}=2 \times$ FX0359 + D.P. Red Neon
Switch
$\mathbf{0 9}=2 \times$ FX0359 + D.P. Green Neon
Switch
$19=2 \times$ FX0359 + D.P. Red Neon
Switch 125 V
Twin Fuseholder and Neon Indicator:
$\mathbf{0 7}=2 \times$ FX0359 + Red Neon
Indicator
Voltage Selector, Fuseholder and Double Pole Switch:
$15=1 \times$ VS0001 $+1 \times$ FX0359 +
Double Pole switch
Voltage Selector, Fuseholder and Double Pole Neon Switch:
$\mathbf{1 6}=1 \times$ VS0001 $+1 \times$ FX0359 + D.P.
Red Neon Switch
$\mathbf{1 8}=1 \times$ VS0001 $+1 \times$ FX0359 + D.P.
Green Neon Switch
Voltage Selector, Fuseholder and Neon Indicator:
$\mathbf{1 7}=1 \times$ VS0001 $+1 \times$ FXO359 + Red Neon Indicator

Twin Fuseholder and Double Pole High Inrush Switch:
$\mathbf{2 0}=2 \times$ FX0359 + D.P. High Inrush Switch

Twin Fuseholder and Double Pole High
Inrush Neon Switch:
$\mathbf{2 1}=2 \times$ FX0359 $+1 \times$ D.P. High
Inrush Green Neon Switch
$\mathbf{2 2}=2 \times$ FX0359 + $1 \times$ D.P. High
Inrush Red Neon Switch

Voltage Selector, Neon Indicator and Double Pole Switch
$\mathbf{2 5}=1 \mathrm{x}$ VSOOO1 +1 x
DX0928/110V/Red + D.P. Switch
$\mathbf{2 6}=1 \times$ VSOOO1 $+1 \times$
DX0928/110V/Green + D.P. Switch
$27=1 \times$ VS0001 $+1 \times$
DX0928/250V/Red + D.P. Switch
$\mathbf{2 8}=1 \times$ VSOOO1 $+1 \times$
DX0928/250V/Green + D.P. Switch
Voltage Selector, Neon Indicator and Double Pole High Inrush Switch:
$29=1 \times$ VSOOO1 $+1 \times$
DX0928/250V/Red + D.P. High Inrush Switch
$30=1 \times V S 0001+1 \times$ DX0928/250V/Green + D.P. High Inrush Switch

Fuseholder, Neon Indicator and Double Pole Switch
$31=1 \times \mathrm{FX} 0359+1 \mathrm{x}$
DX0928/110V/Red + D.P. Switch
$32=1 \times$ FX0359 $+1 \times$
DX0928/110V/Green + D.P. Switch
$33=1 \times$ FX0359 $+1 \times$ DX0928/250V/Red + D.P. Switch
$34=1 \times$ Fx0359 $+1 \times$
DX0928/250V/Green + D.P. Switch
Fuseholder, Neon Indicator and Double Pole High Inrush Switch:
$35=1 \times$ FX0359 $+1 \times$ DX0928/250V/Red + D.P. High Inrush Switch
$36=1 \times$ FX0359 $+1 \times$
DX0928/250V/Green + D.P. High Inrush Switch

Fuseholder, Blanking Plate and Double Pole High Inrush Neon Switch:
$\mathbf{4 7}=1 \times$ FX0359 $+1 \times$ Blanking Plate (Right) + D.P. High Inrush Green Neon Switch

Fuseholder, Blanking Plate and Double Pole Switch:
$48=1 \times$ FX0359 $+1 \times$ Blanking Plate (Right) + D.P. Switch

C14 and C16 IEC Inlet - Vertical

VERTICAL MODULE ARRANGEMENT

- Inlet with 2.8 mm or 6.3 mm tags
- Fuseholder/Voltage Selector/Indicator options/Blanking plate
- Filtered Inlet Option

How to Order

Type of Inlet / Outlet
C14 Power Inlet (cold condition), 6.3 or
2.8 mm tabs:

C14 Power Inlet (cold condition), 6.3 or
2.8 mm tabs:
$\mathbf{0 3}=$ PX0575/63
$\mathbf{0 4}=$ PX0575/28

C16 Power Inlet (hot condition), 6.3 or 2.8 mm tabs:
$05=$ PX0595/63
$04=$ PX0575/28

$$
06=P \times 0595 / 28
$$

$$
\begin{aligned}
& \text { Please note type } 05 \text { and } 06 \text { are not available in } \\
& \text { filtered version }
\end{aligned}
$$

For Filtered inlet use 6th to 9th characters from
filter ordering code see pages 113-114.
E.g. BZV04/A0120/04
Find

Filtered or Non Filtered Inlet

Z0000 $=$ Non Filtered
Axxxx $=$ Standard
Bxxxx $=$ Medical

Combination of Other Components

Twin Fuseholder:
$\mathbf{0 4}=2 \times$ FX0359

Voltage Selector and Fuseholder:
$14=1 \times V S 0001+1 \times$ FX0359

Voltage selector and Neon:
$37=1 \times$ VS0001 + DX0928/110V/Red
$38=1 \times$ VS0001 + DX0928/110V/Green
$39=1 \times$ VS0001 + DX0928/250V/Red
$40=1 \times$ VS0001 + DX0928/250V/Green

Fuseholder and Neon:
$41=1 \times$ FX0359 + DX0928/110V/Red
$\mathbf{4 2}=1 \times$ FX0359 + DX0928/110V/Green
$43=1 \times$ FX0359 + DX0928/250V/Red
$44=1 \times$ FX0359 + DX0928/250V/Green

Fuseholder and Blanking Plate:
$45=1 \times$ FX0359 + Blanking Plate

Voltage Selector and Blanking Plate:
$\mathbf{B 2}=1 \times$ VS0001 + Blanking Plate

[^3]- Inlet with 4.8 mm or 6.3 mm tags
- Single Pole Switch marked I/O
- Illuminated, red or green, switches
- High inrush non-illuminated switch

How to Order	BZV xx / $\mathrm{xxxxx}^{\text {/ }}$ xx	
Type of Inlet	Filtered or Non Filtered Inlet	Combination of Other Components
C20 Power Inlet (cold condition), 4.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{4 9}=\text { PX0598/63 } \\ & \mathbf{5 0}=\text { PX0598/48 } \end{aligned}$	Z0000 $=$ Non Filtered	Single Pole Switch: $01=$ S.P. Switch Single Pole Switch Marked (I/O): 69 = S.P. Switch (I/O) Single Pole Illuminated Switch: $\mathbf{0 2}=$ S.P. Illuminated Red $08=$ S.P. Illuminated Green Single Pole Non-illuminated High Inrush Switch Marked I/O: $98=$ S.P. High Inrush Switch (I/O) Single Pole Illuminated (Red or Green 250v Neon) Switch Marked I/O: $\mathbf{7 1}$ = S.P. Switch Illuminated Red (I/O) $\mathbf{7 4}=$ S.P. Switch Illuminated Green (I/O)

[^4]
C14 IEC Inlet/Sheet F IEC Outlet - Vertical

- Inlet/Outlet Combination
- 2.8 mm or 6.3 mm tags
- Filtered Inlet and Blanking Plate options
- Shuttered or Non-shuttered Outlet
- Fused

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
Cl 4 Power Inlet (cold condition) and Sheet F Non-shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{0 9}=\text { PX0575/63 + PX0695/63 } \\ & \mathbf{1 0}=\text { PX0575/28 + PX0695/28 } \end{aligned}$ Cl 4 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 7}=\text { PX0575/63 + PX0783/63 } \\ & \mathbf{1 8}=\text { PX0575/28 + PX0783/28 } \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard $B x x x x=$ Medical For Filtered inlet use 6th to 9th characters from filter ordering code see pages 113-114. E.g. BZV09/A0120/04	Twin Fuseholder: $\mathbf{0 4}=2 \times \text { FX0359 }$ Voltage Selector and Fuseholder: $14 \text { = } 1 \times \text { VS0001 }+1 \times \text { FX0359 }$ Voltage selector and Neon: $\begin{aligned} & \mathbf{3 7}=1 \times \text { VS0001 }+ \text { DX0928/110V/Red } \\ & \mathbf{3 8}=1 \times \text { VS0001 + DX0928/110V/Green } \\ & \mathbf{3 9}=1 \times \text { VS0001 + DX0928/250V/Red } \\ & \mathbf{4 0}=1 \times \text { VS0001 + DX0928/250V/Green } \end{aligned}$ Fuseholder and Neon: $\begin{aligned} & \mathbf{4 1}=1 \times \text { FX0359 + DX0928/110V/Red } \\ & \mathbf{4 2}=1 \times \text { FX0359 + DX0928/110V/Green } \\ & \mathbf{4 3}=1 \times \text { FX0359 + DX0928/250V/Red } \\ & \mathbf{4 4}=1 \times \text { FX0359 + DX0928/250V/Green } \end{aligned}$ Fuseholder and Blanking Plate: $\mathbf{4 5}=1 \times \text { FX0359 + Blanking Plate }$ Voltage Selector and Blanking Plate: $\text { B2 }=1 \times \text { VS0001 + Blanking Plate }$

[^5]| VERTICAL MODULEARRANGEMENT | |
| :---: | :---: |
| BZV45/Z0000/02 | - Outlet with 2.8 mm or 6.3 mm tags
 - Shuttered or Non-Shuttered
 - Single Pole Switch or Neon Indicator
 - I/O Marking Options |

	BZV xx / xxxxx / xx	
Type of Outlet	Non Filtered Outlet	Combination of Other Components
Sheet F Power Outlet (non shuttered), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{4 5}=P X 0695 / 63 \\ & \mathbf{4 6}=\text { PX0695/28 } \end{aligned}$ Sheet F Power Outlet (shuttered), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{4 7}=P X 0783 / 63 \\ & \mathbf{4 8}=\text { PX0783/28 } \end{aligned}$	Z0000 $=$ Non Filtered	Single Pole Switch: 01 = S.P. Switch Single Pole Neon Switch: $\mathbf{0 2}=$ S.P. Red Neon Switch $08=$ S.P. Green Neon Switch Neon Indicator: $\mathbf{0 3}=$ Red Neon Indicator Single Pole High Inrush Switch: 46 = S.P. High Inrush Switch Single Pole Switch Marked I/O: 69 = S.P. Switch (I/O) Single Pole Neon Switch Marked (I/O): 71 = S.P. Red Neon Switch (I/O) 74 = S.P. Green Neon Switch (I/O) Single Pole High Inrush Switch Marked (I/O): $98=$ S.P. High Inrush Switch (I/O)

[^6]
C20 IEC Inlet with Circuit Breaker

VERTICAL MODULE ARRANGEMENT

- Inlet with 4.8 mm or 6.3 mm tags
- Single pole circuit breaker
- Illuminated (red or green) and non-illuminated rocker
- 125 Vac and 250 Vac Neons
- 6.3 mm tabs on Circuit Breaker

Panel Thickness: 1.0, 1.5, 2.0, 3.0mm.

[^7]

Capacity Correction Factors for Ambient Temperatures Current Rating 5 to 15A

Temperature ${ }^{\circ} \mathrm{C}$	-10	-20	-25	-30	-40	-50	-60
Correction Factor	.90	.95	1.00	1.10	1.32	1.61	2.15

Circuit Breaker Approvals:

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Single Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

BZHO1/*****/** $\}$ A $=59.7$ With Filter
BZHO2 $/ * * * * * / * *\} A=27.4$ Without Filter
BZH15/*****/** $\} A=59.7$ With Filter
BZH16/*****/** $\} A=37.9$ Without Filter
Panel Thickness. 1.0, 1.5, 2.0, 3.0 mm

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
Single Fused C14 Power Inlet (cold condition), 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{0 1}=\text { PFOO1 } 1 / 63 \\ & \mathbf{0 2}=\text { PF0011/28 } \end{aligned}$ Twin Fused C14 Power Inlet (cold condition), 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 5}=\text { PF0033/63 } \\ & \mathbf{1 6}=\text { PF0033/28 } \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard Bxxxx $=$ Medical Cxxxx $=$ High Performance Standard (Single Fuse Version only) For Filtered inlet use 6th to 9th characters from filter ordering code see pages 115-118. E.g. BZHO1/A0620/01	Single Pole Switch: $01=$ S.P. Switch Single Pole Neon Switch: $\mathbf{0 2}=$ S.P. Red Neon Switch 08 = S.P. Green Neon Switch Neon Indicator: $\mathbf{0 3}=$ Red Neon Indicator Single Pole High Inrush Switch: 46 = S.P. High Inrush Switch Single Pole Switch Marked I/O: 69 = S.P. Switch (I/O) Single Pole Neon Switch Marked (I/O): 71 = S.P. Red Neon Switch (I/O) $\mathbf{7 4}$ = S.P. Green Neon Switch (I/O) Single Pole High Inrush Switch Marked (I/O): 98 = S.P. High Inrush Switch (I/O)

[^8]
C14 IEC Fused Inlet - Horizontal

HORZONTAL MODULE ARRANGEMENT

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Double Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order

Type of Inlet / Outlet

Filtered or Non Filtered Inlet
Combination of Other Components

Single Fused C14 Power Inlet (cold condition),
2.8 or 6.3 mm tabs:
$01=$ PF0011/63
$\mathbf{0 2}=$ PF0011/28

Twin Fused C14 Power Inlet (cold condition),
2.8 or 6.3 mm tabs:
$15=$ PF0033/63
$16=$ PF0033/28

$Z 0000=$	Non Filtered
$A x x x x=$	Standard
$B x x x x=$	Medical
$C x x x x=$	High Performance Standard (Single Fuse Version only)

For Filtered inlet use 6th to 9th characters from filter ordering code see pages 115-118.
E.g. BZH01/A0620/10

Neon Indicator:
$\mathbf{0 3}=$ Red Neon Indicator

Double Pole Switch:
$\mathbf{1 0}=$ D.P. Switch

Double Pole Neon Switch:
11 = D.P. Red Neon Switch
12 = D.P. Green Neon Switch

Double Pole High Inrush Switch:
13 = D.P. High Inrush Switch

Double Pole Switch marked I/O:
$70=$ D.P. Switch (I/O)
Double Pole Neon Switch Marked (I/O):
76 = D.P. Red Neon Switch (I/O)
77 = D.P. Green Neon Switch (I/O)
Double Pole High Inrush Switch Marked (I/O):

78 = D.P. High Inrush Switch (I/O)
B1 $=$ D.P. High Inrush Green Neon Switch (I/O)

[^9]
C14 IEC Inlet/Sheet F IEC Outlet - Horizontal

HORIZONTAL MODULE ARRANGEMENT

- Inlet/Outlet Combination with 2.8 mm or 6.3 mm tags
- Shuttered or Non-Shuttered Outlet
- Single Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
C14 Power Inlet (cold condition) and Sheet F Non-shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{0 9}=P X 0575 / 63+P X 0695 / 63 \\ & \mathbf{1 0}=P X 0575 / 28+P X 0695 / 28 \end{aligned}$ C14 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 7}=P X 0575 / 63+P X 0783 / 63 \\ & \mathbf{1 8}=P X 0575 / 28+P X 0783 / 28 \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard Bxxxx $=$ Medical For Filtered inlet use 6th to 9th characters from filter ordering code see pages 113-114. E.g. BZH09/A0120/01	Single Pole Switch: $01=$ S.P. Switch Single Pole Neon Switch: $\mathbf{0 2}=$ S.P. Red Neon Switch $08=$ S.P. Green Neon Switch Neon Indicator: $\mathbf{0 3}=$ Red Neon Indicator Single Pole High Inrush Switch: 46 = S.P. High Inrush Switch Single Pole Switch Marked I/O: 69 = S.P. Switch (I/O) Single Pole Neon Switch Marked (I/O): 71 = S.P. Red Neon Switch (I/O) 74 = S.P. Green Neon Switch (I/O) Single Pole High Inrush Switch Marked (I/O): $\mathbf{9 8}=$ S.P. High Inrush Switch (I/O)

[^10]C14 IEC Inlet/Sheet F IEC Outlet - Horizontal

HORIZONIAL MODULE ARRANGEMENI

- Inlet/Outlet Combination with 2.8 mm or 6.3 mm tags
- Single or Twin Fused Inlet
- Shuttered or Non-Shuttered Outlet
- Double Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order

Type of Inlet/Outlet

Twin Fused C14 Power Inlet (cold condition) and Sheet F Power Outlet , 2.8 or 6.3 mm tabs:

13 = PF0033/63 + PX0695/63
14 = PF0033/28 + PX0695/28

Single Fused C14 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet, 2.8 or 6.3 mm tabs:
$19=$ PF0011/63 + PX0783/63
$\mathbf{2 0}$ = PF0011/28 + PX0783/28

Twin Fused C14 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet , 2.8 or 6.3 mm tabs:
$\mathbf{2 1}$ = PF0033/63 + PX0783/63
$\mathbf{2 2}=$ PF0033/28 + PXO783/28
Single Fused C14 Power Inlet (cold condition) and Sheet F Power Outlet, 2.8 or 6.3 mm tabs:

11 = PF0011/63 + PX0695/63
$\mathbf{1 2}=$ PF0011/28 + PX0695/28

-

Filtered or Non Filtered Inlet

Z0000 = Non Filtered
Axxxx $=$ Standard
Bxxxx $=$ Medical
Cxxxx $=$ High Performance Standard

filter ordering code see pages 115-118
E.g. BZH1 1/A0620/10

Combination of Other Components

Neon Indicator:
D3 $=$ Red Neon Indicator

Double Pole Switch:
10 = D.P. Switch

Double Pole Neon Switch:
11 = D.P. Red Neon Switch
12 = D.P. Green Neon Switch

Double Pole High Inrush Switch:
13 = D.P. High Inrush Switch

Double Pole Switch Marked I/O:
$\mathbf{7 0}=$ D.P. Switch (I/O)
Double Pole Neon Switch Marked (I/O):
76 = D.P. Red Neon Switch (I/O)
77 = D.P. Green Neon Switch (I/O)
Double Pole High Inrush Switch Marked (I/O):

78 = D.P. High Inrush Switch (I/O)
B1 $=$ D.P. High Inrush Green Neon Switch (I/O)

[^11]
C14 IEC Fused Inlet/Sheet F IEC Outlet - Horizontal

HORIZONTAL MODULE ARRANCEMENT

- Fused Inlet/Outlet

Combination with 2.8 mm or 6.3 mm tags

- Filtered Inlet Option
- Single or Twin Fused

How to Order		
Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
Single Fused C14 Power Inlet (cold condition) and Sheet F Non-shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 1}=\text { PF001 } 1 / 63+\text { PX0695/63 } \\ & \mathbf{1 2}=\text { PF0011 } / 28+\text { PX0695/28 } \end{aligned}$ Twin Fused C14 Power Inlet (cold condition) and Sheet F Non-shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 3}=\text { PF0033/63 }+ \text { PX0695/63 } \\ & \mathbf{1 4}=\text { PF0033/28 }+ \text { PX0695/28 } \end{aligned}$ Single Fused C14 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{1 9}=\text { PF0011/63 }+ \text { PX0783/63 } \\ & \mathbf{2 0}=\text { PF0011/28 }+ \text { PX0783/28 } \end{aligned}$ Twin Fused C14 Power Inlet (cold condition) and Sheet F Shuttered Power Outlet, 2.8 or 6.3 mm tabs: $\begin{aligned} & \mathbf{2 1}=P F 0033 / 63+\text { PX0783/63 } \\ & \mathbf{2 2}=\text { PF0033/28 }+ \text { PX0783/28 } \end{aligned}$	$\begin{aligned} Z 0000= & \text { Non Filtered } \\ \text { Axxxx }= & \text { Standard } \\ \text { Bxxxx }= & \text { Medical } \\ C x x x x= & \text { High Performance Standard } \\ & \text { (Single Fuse Version only) } \end{aligned}$ For Filtered inlet use 6th to 9th characters from filter ordering code see pages 115-118.	None $\mathbf{0 0}=\text { None }$

[^12]
C14 IEC Inlet - Mini Bezel

Panel Thickness $1.0,1.5,2.0,3.0 \mathrm{~mm}$
BZM27/*****/*** $\} A=63.5$ With Filter.
BZM28/*****/*** $\} A=29.1$ Without Filter.
$B=54.9$ With D.P. Switch. 45.9 With S.P. Switch. $C=57.5$ With D.P. Switch. 48.5 With S.P. Switch.

[^13]
C14 IEC Fused Inlet - Polyflange

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Screw Fixing to Panel
- Single Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Screw Fixing to Panel
- Single Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

[^14]
C14 IEC Fused Inlet - Polyflange

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Screw Fixing to Panel
- Double Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

- Fused Inlet with 2.8 mm or 6.3 mm tags
- Screw Fixing to Panel
- Double Pole Switch Variations
- Filtered Inlet Option
- Options of I/O marked switches

How to Order $\mathrm{BVxx}^{\text {c }}$ / xxxxx / xx			
Flange Type	Type of Inlet / Outlet	Filtered or Non Filtered Inlet	Combination of Other Components
$\begin{aligned} & \mathbf{A}=\text { Top fixing } \\ & \mathbf{B}=\text { Side fixing } \end{aligned}$	Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{0 1}=\text { PF0011/63 } \\ & \mathbf{0 2}=\text { PF0011/28 } \end{aligned}$ Twin Fused C14 Power Inlet (cold condition), 6.3 or 2.8 mm tabs: $\begin{aligned} & \mathbf{1 5}=\text { PFO033/63 } \\ & \mathbf{1 6}=\text { PF0033/28 } \end{aligned}$	Z0000 $=$ Non Filtered Axxxx $=$ Standard Bxxxx $=$ Medical Cxxxx $=$ High Performance Standard (Single Fuse Version only) For Filtered inlet use 6th to 9 th characters from filter ordering code see pages 115-118. E.g. BVA01/A0620/10	Neon Indicator: D3 $=$ Red Neon Indicator Double Pole Switch: $\mathbf{1 0}=\text { D.P. Switch }$ Double Pole Neon Switch: 11 = D.P. Red Neon Switch $\mathbf{1 2}=$ D.P. Green Neon Switch Double Pole High Inrush Switch: 13 = D.P. High Inrush Switch Double Pole Switch Marked I/O: $70=$ D.P. Switch (I/O) Double Pole Neon Switch Marked (I/O): 76 = D.P. Red Neon Switch (I/O) 77 = D.P. Green Neon Switch (I/O) Double Pole High Inrush Switch Marked (I/O): 78 = D.P. High Inrush Switch (I/O) B1 = D.P. High Inrush Green Neon Switch (I/O)

- For Polysnap modules BZV03, BZV04, BZV09, BZV10, BZV17, BZV18, BZH09, BZH10, BZH17, BZH18,
BZM27, BZM28
- PX0575 style IEC inlet
- Using PSO1/A style filter
- Standard Attenuation Filter

$\underline{\text { Bxxxx/Ax }}$ x \times / $\mathbf{x x}$					
		\square		\downarrow	\downarrow
γ	\downarrow	γ			
Polysnap Part No.	Filter Type	Rating	L/C Circuit	Additional Components	Polysnap Part No.
From Polysnap Selection	A $=$ Standard	$01=1 \mathrm{~A}$	1 = Version 1	$0=$ None	From Polysnap Selection
		$03=3 \mathrm{~A}$	$2=$ Version 2	$1=$ Bleed (R) Resistor	
		$06=6 \mathrm{~A}$	$3=$ Version 3	$2=$ Surge (VDR) Protection	
		$10=10 \mathrm{~A}$		$3=$ " $\mathrm{R}^{\prime \prime}$ plus "VDR"	

Rating	Version	L1	Cx	Cy	Part No. Example
1 AMP	1	$2 \times 2.8 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 n F$	BZV03/A0120/02 = BZV style Polysnap module with PX0575 IEC power inlet, filter rated at $1 \mathrm{amp}, \mathrm{L} / \mathrm{C}$ circuit version $2(\mathrm{~L} 1=2 \times 10 \mathrm{mH}, \mathrm{Cx}=1 \times 15 \mathrm{nF}$, $\mathrm{Cy}=2 \times 2.2 \mathrm{nF}$), without bleed resistor or surge
"	2	$2 \times 10 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 \mathrm{nF}$	
"	3	$2 \times 10 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$	$2 \times 2.2 n F$	
3 AMP	1	$2 \times 0.75 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 n F$	
"	2	$2 \times 1.8 \mathrm{mH}$	$1 \times 15 \mathrm{FF}$	$2 \times 2.2 \mathrm{nF}$	
"	3	$2 \times 1.8 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$	$2 \times 2.2 n F$	
6 AMP	1	$2 \times 0.3 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 \mathrm{nF}$	protection device fitted, 6.3 mm tabs and single pole red neon switch.
"	2	$2 \times 0.7 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 \mathrm{nF}$	
"	3	$2 \times 0.7 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$	$2 \times 2.2 n F$	
10 AMP	1	$2 \times 0.17 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 \mathrm{nF}$	
"	2	$2 \times 0.35 \mathrm{mH}$	$1 \times 15 \mathrm{FF}$	$2 \times 2.2 \mathrm{nF}$	
"	3	$2 \times 0.17 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$	$2 \times 2.2 n F$	

Filter Specification

Max. Working Voltage:
Earth Leakage Current:
Temperature Range:
Max. Ambient Temp.:
(@ Full Load)
Test Voltage:

Approvals:

250 V a.c. $50-400 \mathrm{~Hz}$
$<0.35 \mathrm{~mA}(250 \mathrm{~V} .50 \mathrm{~Hz}$)
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$ (derate linearly to $0 \mathrm{~A} @ 85^{\circ} \mathrm{C}$)

2700 V d.c. 2 secs. Lines to Earth
1100 V d.c. 2 secs. Live to Neutral

C14 IEC Inlet - Medical Filter

Bxxxx/Bxx x $x / \mathbf{x x}$

$\underline{\text { Bxxxx/Bxx }}$ x \times / \mathbf{x}					
γ					\downarrow
Polysnap Part No.	Filter Type	Rating	L/C Circuit	Additional Components	Polysnap Part No.
From Polysnap Selection	$\mathrm{B}=$ Medical	$01=1 \mathrm{~A}$	1 = Version 1	$0=$ None	From Polysnap Selection
		$03=3 \mathrm{~A}$	$2=$ Version 2	1 = Bleed (R) Resistor	
		$06=6 \mathrm{~A}$	3 = Version 3	$2=$ Surge (VDR) Protection	
		$10=10 \mathrm{~A}$		3 = " R^{\prime} plus "VDR"	

Rating	Version	$\mathbf{L 1}$	$\mathbf{C x}$
1 AMP	1	$2 \times 2.8 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	2	$2 \times 10 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	3	$2 \times 10 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$
3 AMP	1	$2 \times 0.75 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	2	$2 \times 1.8 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	3	$2 \times 1.8 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$
6 AMP	1	$2 \times 0.3 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	2	$2 \times 0.7 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	3	$2 \times 0.7 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$
10 AMP	1	$2 \times 0.17 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	$2 \times 0.35 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	
"	$2 \times 0.17 \mathrm{mH}$	$1 \times 47 \mathrm{nF}$	

Part No. Example

BZV04/B0322/04 =

BZV style Polysnap module with PX0575 IEC power inlet, filter rated at 3 amps , L/C circuit version $2(\mathrm{~L} 1=2 \times 1.8 \mathrm{mH}, \mathrm{Cx}=1 \times 15 \mathrm{nF})$,
without bleed resistor, with surge protection device fitted, 2.8 mm tabs and two fuseholders.

Filter Specification

Max. Working Voltage:
Earth Leakage Current:
Temperature Range:
Max. Ambient Temp.:
(@ Full Load)
Test Voltage:

Approvals:

250 V a.c. $50-400 \mathrm{~Hz}$
$<100 \mu \mathrm{~A}$ (typically $5 \mu \mathrm{~A}, 250 \mathrm{~V} .50 \mathrm{~Hz}$)
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$ (derate linearly to $0 \mathrm{~A} @ 85^{\circ} \mathrm{C}$)

2700 V d.c. 2 secs. Lines to Earth
1100 V d.c. 2 secs. Live to Neutral

彩哟 (6) TJ

C14 Inlet Single Fuse - Standard Filter

- For Polysnap modules BZVO1, BZVO2, BZHO1, BZHO2, BZH11, BZH12, BZH19, BZH2O, BVA01, BVA02, BVBO1, BVBO2
- PF0011 style single fuse IEC inlet
- Using PS2 1/A style filter
- Standard Attenuation Filter

\downarrow	\downarrow	\downarrow			
Polysnap Part No.	Filter Type	Rating	L/C Circuit	Additional Components	Polysnap Part No.
From Polysnap Selection	A $=$ Standard	$01=1 \mathrm{~A}$	$2=$ Version 2	$0=$ None	From Polysnap Selection
		$03=3 \mathrm{~A}$	3 = Version 3		
		$06=6 \mathrm{~A}$			

Rating	Version	L1	Cx	Cy	Part No. Example
$1 \text { AMP }$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$2 \times 12 \mathrm{mH}$	$1 \times 47 n F$	$2 \times 2.2 n F$	BZV01/A0630/01 = BZV style Polysnap module with PFO011 single fused ($5 \times 20 \mathrm{~mm}$) IEC power inlet, filter rated at
$3 \text { AMP }$	1 2 3	$\begin{aligned} & 2 \times 1.8 \mathrm{mH} \\ & 2 \times 6.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & 1 \times 15 n F \\ & 1 \times 47 n F \end{aligned}$	$\begin{aligned} & 2 \times 2.2 n F \\ & 2 \times 2.2 n F \end{aligned}$	$\begin{aligned} & 6 \mathrm{amp}, \mathrm{~L} / \mathrm{C} \text { circuit version } 3(\mathrm{~L} 1=2 \times 2.0 \mathrm{mH}, \mathrm{Cx} \\ & =1 \times 47 \mathrm{nF}, \mathrm{Cy}=2 \times 2.2 \mathrm{nF}), 6.3 \mathrm{~mm} \text { tabs and } \end{aligned}$
$6 \text { AMP }$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \times 0.7 \mathrm{mH} \\ & 2 \times 2 \mathrm{mH} \end{aligned}$	$\begin{aligned} & 1 \times 15 n F \\ & 1 \times 47 n F \end{aligned}$	$\begin{aligned} & 2 \times 2.2 n F \\ & 2 \times 2.2 n F \end{aligned}$	single pole switch.
$10 \text { AMP }$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$				

Filter Specification

Max. Working Voltage:
Earth Leakage Current:
Temperature Range:
Max. Ambient Temp.:
(@ Full Load)
Test Voltage:

Approvals:

250 V a.c. $50-400 \mathrm{~Hz}$
$<0.35 \mathrm{~mA}(250 \mathrm{~V} .50 \mathrm{~Hz})$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$ (derate linearly to $0 \mathrm{~A} @ 85^{\circ} \mathrm{C}$)
$2700 V$ d.c. 2 secs. Lines to Earth
1100 V d.c. 2 secs. Live to Neutral

C14 Inlet Single Fuse - High Performance Filter

- For Polysnap modules BZVO1, BZVO2, BZHO1, BZHO2, BZH11, BZH12, BZH19, BZH2O, BVA01, BVA02, BVBO1, BVB02
- PF0011 style single fuse IEC inlet
- Using PS23/A style filter
- High Performance Attenuation Filter

Bxxxx/Cxx x x/xx

Bxxxx/Cxx x x/xx					
	-	\square	Г		
γ	\downarrow	γ	∇	\downarrow	\downarrow
Polysnap Part No.	Filter Type	Rating	L/C Circuit	Additional Components	Polysnap Part No.
From Polysnap Selection	C = High Performance	$03=3 A$	3 = Version 3	$0=$ None	From Polysnap Selection
		$06=6 \mathrm{~A}$			

Rating	Version	L1	Cx	Cy	Part No. Example
$1 \text { AMP }$	1 2 3				BZV01/C0330/01 = BZV style Polysnap module with PF0011 single
$3 \text { AMP }$	1 2 3	$2 \times 1.8 \mathrm{mH}$	$2 \times 47 \mathrm{nF}$	$2 \times 2.2 n F$	fused ($5 \times 20 \mathrm{~mm}$) IEC power inlet, filter rated at $3 \mathrm{amps}, \mathrm{L} / \mathrm{C}$ circuit version 3 ($\mathrm{L} 1=2 \times 1.8 \mathrm{mH}$, $C x=2 \times 47 n F, C y=2 \times 2.2 n F), 6.3 \mathrm{~mm}$ tabs and
$6 \text { AMP }$	1 2 3	$2 \times 0.7 \mathrm{mH}$	$2 \times 47 n F$	$2 \times 2.2 n F$	single pole switch.
$10 \text { AMP }$	1 2 3				

Filter Specification

Max. Working Voltage:
250 V a.c. $50-400 \mathrm{~Hz}$
Earth Leakage Current:
$<0.35 \mathrm{~mA}(250 \mathrm{~V} .50 \mathrm{~Hz})$
Temperature Range:
Max. Ambient Temp.:
$40^{\circ} \mathrm{C}$ (derate linearly to $0 \mathrm{~A} @ 85^{\circ} \mathrm{C}$)
(@ Full Load)
Test Voltage:
2700 V d.c. 2 secs. Lines to Earth
1100 V d.c. 2 secs. Live to Neutral
Approvals:

Attenuation Curves:

- For Polysnap modules BZV15, BZV16, BZH13, BZH14, BZH15, BZH16, BZH21, BZH22, BVA15, BVA16, BVB15, BVB16
- PF0033 style twin fuse IEC inlet
- Using PS26/A filter
- Standard Attenuation Filter

Rating	Version	L1	Cx	Cy	Part No. Example
$2 \text { AMP }$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$2 \times 1.8 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 n F$	BZH13/A0420/00 = BZH style Polysnap module with PF0033 twin fused ($5 \times 20 \mathrm{~mm}$) IEC power inlet, filter rated at
$4 \text { AMP }$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$2 \times 0.7 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$	$2 \times 2.2 n F$	$4 \mathrm{amps}, \mathrm{L} / \mathrm{C}$ circuit version 2 ($\mathrm{L} 1=2 \times 0.7 \mathrm{mH}$, $C x=1 \times 15 n F, C y=2 \times 2.2 n F)$, without bleed

Filter Specification		
Max. Working Voltage:	250 V a.c. $50-400 \mathrm{~Hz}$	
Max. Power Dissipation:	2.5 W per fuse	
Earth Leakage Current:	$<0.35 \mathrm{~mA}(250 \mathrm{~V} .50 \mathrm{~Hz})$	
Temperature Range:	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Max. Ambient Temp.: (@ Full Load)	$40^{\circ} \mathrm{C}$ (derate linearly to $0 \mathrm{~A} @ 85^{\circ} \mathrm{C}$)	
Test Voltage:	2700 V d.c. 2 secs. Lines to Earth 1100 V d.c. 2 secs. Live to Neutral	
Approvals:	奖 ${ }^{10}$ 莒	
Attenuation Curves:	See PS26/A filter, page 133	
www.bulgin.co.uk		117

C14 Inlet Twin Fuse - Medical Filter

- For Polysnap modules BZV15, BZV16, BZH13, BZH14, BZH15, BZH16, BZH21, BZH22, BVA15, BVA16, BVB15, BVB16
- PF0033 style łwin fuse IEC inlet
- Using PS26/B style filter
- Medical Attenuation Filter

Bxxxx/Bxx x x/xx

$\underline{B x x x x / B x x ~ x ~} \times$ / \mathbf{x}					
γ					\downarrow
Polysnap Part No.	Filter Type	Rating	L/C Circuit	Additional Components	Polysnap Part No.
From Polysnap Selection	$B=$ Medical	$02=2 A$	$2=$ Version 2	$0=$ None	From Polysnap Selection
		$04=4 \mathrm{~A}$		1 = Bleed (R) Res	

Rating	Version	L1	Cx
2 AMP	1		
""	2	$2 \times 1.8 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
"	3		
4 AMP	1		
""	2	$2 \times 0.7 \mathrm{mH}$	$1 \times 15 \mathrm{nF}$
	3		

Part No. Example

BZH15/B0221/01 =

BZH style Polysnap module with PFOO33 twin fused ($5 \times 20 \mathrm{~mm}$) IEC power inlet, filter rated at
$2 \mathrm{amp}, \mathrm{L} / \mathrm{C}$ circuit version $2(\mathrm{LI}=2 \times 1.8 \mathrm{mH}, \mathrm{Cx}$ $=1 \times 15 \mathrm{nF}$), with bleed resistor fitted, 6.3 mm tabs and single pole switch.

Filter Specification		
Max. Working Voltage:	250 V a.c. $50-400 \mathrm{~Hz}$	
Max. Power Dissipation:	2.5W per fuse	
Earth Leakage Current:	<100 ${ }^{\text {A }}$ (typically $5 \mu \mathrm{~A} 250 \mathrm{~V} .50 \mathrm{~Hz}$)	
Temperature Range:	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Max. Ambient Temp.: (@ Full Load)	$40^{\circ} \mathrm{C}$ (derate linearly to $0 \mathrm{~A} @ 85^{\circ} \mathrm{C}$)	
Test Voltage:	2700 V d.c. 2 secs. Lines to Earth 1100 V d.c. 2 secs. Live to Neutral	
Approvals:	$\mathcal{H}^{10} \text { 金 }$	
Attenuation Curves:	See PS26/B filter, page 135	
118		www.bulgin.co.uk

[^0]: Note: For technical details of individual components please see page 92

[^1]: Note: For technical details of individual components please see page 92

[^2]: Note: For technical details of individual components please see page 92

[^3]: Note: For technical details of individual components please see page 92

[^4]: Note: For technical details of individual components please see page 92

[^5]: Note: For technical details of individual components please see page 92

[^6]: Note: For technical details of individual components please see page 92

[^7]: Note: For technical details of individual components also see page 92

[^8]: Note: For technical details of individual components please see page 92

[^9]: Note: For technical details of individual components please see page 92

[^10]: Note: For technical details of individual components please see page 92

[^11]: Note: For technical details of individual components please see page 92

[^12]: Note: For technical details of individual components please see page 92

[^13]: Note: For technical details of individual components please see please see page 92

[^14]: Note: For technical details of individual components please see page 92

